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On the Error Probability of Binary and M-ary Signals
in Nakagami-m Fading Channels
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Abstract—In this letter, we present new closed-form formulas
for the exact average symbol-error rate (SER) of binary and
M -ary signals over Nakagami-m fading channels with arbitrary
fading index m. Using the well-known moment generating
function-based analysis approach, we express the average SER in
terms of the higher transcendental functions such as the Gauss
hypergeometric function, Appell hypergeometric function, or Lau-
ricella function. The results are generally applicable to arbitrary
real-valued m. Furthermore, with the aid of reduction formulas
of hypergeometric functions, we show previously published results
for Rayleigh fading (m = 1) as special cases of our expressions.

Index Terms—Digital communications, Nakagami
symbol-error rate (SER), wireless communications.

fading,

1. INTRODUCTION

N DIGITAL communication systems, the symbol-error rate

(SER) has been used very extensively as a performance mea-
sure, and accurate methods for evaluating it over fading chan-
nels has been an area of long-time interest (see [2]-[9] and ref-
erences therein). Recently, a unified approach for evaluating the
error performance over fading channels has been developed by
using alternative representations of the Gaussian and Marcum
Q-functions [7]-[9]. By their alternative representations, the re-
sulting expressions for average error rates are in the form of
single finite-range integrals, whose integrand contains the mo-
ment generating function (MGF) of the instantaneous signal-to-
noise ratio (SNR). In particular, Annamalai and Tellambura [7]
derived closed-form solutions to the average SER for a broad
class of binary and M -ary modulation formats in Nakagami-m
fading with positive integer m, using some trigonometric iden-
tities and the MGF-based analysis method. They also extended
the results to multichannel diversity reception. However, to the
best knowledge of the authors, no closed-form SER expressions
for M -ary signals are available for arbitrary M, except for non-
coherent detection of orthogonal M -ary frequency-shift keying
(MFSK), when the Nakagami fading index m is not restricted
to positive integer values.

In this letter, using the MGF method and transforming single
integrals into the hypergeometric functions [10], [11], we de-
rive the exact and closed-form expressions for average SER
of binary and M -ary signals in Nakagami-m fading channels
with arbitrary real-valued m. Our approach leads to expressions
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of average SER involving the Gauss hypergeometric function
o F1, Appell hypergeometric function F}, or Lauricella function
FD" I In addition, we present some reduction formulas for F}
and F’ [()n). Using these reduction formulas and known identities
and transformations of the hypergeometric functions, we show
the well-known results for Rayleigh fading (m = 1) are special
cases of our expressions.

II. CHANNEL MODEL

Assume that the transmitted signal is received over slowly
varying flat-fading channels, and let y denote the instantaneous
SNR defined by v £ o2E, /No where « is the fading ampli-
tude, F is the energy per symbol, and IV is the one-sided noise
spectral density. For Nakagami-rmn fading, the probability den-
sity function (pdf) of « is given by [1]

a>0 (1)
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where T' () is the gamma function, Q £ E [@?] denotes the
mean square value, and mn is the fading severity parameter that
ranges from 0.5 to co. Then, the pdf and MGF of ~ are given
by, respectively [7], [8]
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where 7 £ QF, /Ny denotes the average SNR per symbol.

III. AVERAGE SERS

In this section, we derive closed-form error rates for several
modulation/detection schemes in Nakagami-m fading with ar-
bitrary real-valued m, using the MGF-based analysis method
and the transformation of single integrals into the hypergeo-
metric functions.

A. Coherent BPSK and BFSK

The average bit-error rate (BER) for coherent binary signals
is given by [7]

Py(E) =1 m¢> 9 )b )
k ™ Jo K Sin29

where ¢ = 1 for coherent binary phase-shift keying (BPSK),
g = 1/2 for coherent orthogonal binary frequency-shift keying

IThe hypergeometric functions are provided as the library functions in a
common mathematical software package such as MATHEMATICA.

0090-6778/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 4, APRIL 2004

(BFSK), and g = 0.715 for coherent BFSK with minimum cor-
relation. By change of the variable ¢ = cos? #, after some ma-
nipulations, (4) can be expressed in closed form as

1 —m
Py (E)= —"5727(r9)/0t—1/2 (1—t)m~ 12 (1— —1+tﬂ> dt

_qb,y(g)I‘(m-}-%) L 1
_W2Fl m,E,m—i—l, L& &)

m

where o F) (a, b; ¢; z) is the Gauss hypergeometic function [10,
eq. 2.12.(1)]. Note that we can easily show that (5) is equivalent
to [7, eq. (16)] using the linear transformation 2 F (a, b; ¢; z) =
(1—2)*""3F (¢ — a,c— b;c; 2) [10, eq. 2.1.(23)]. Making
use of the identity 2 F} (1,1/2;2;2) = 2(1 — V1 —2)/z, we
see that (5) reduces to the familiar results [2, eqs. (14-3-7) and
(14-3-8)] for Rayleigh fading.

B. Noncoherent Detection of Equiprobable Correlated Binary
Signals and 7 /4-Differential Quaternary Phase-Shift Keying
(DQPSK)

Nonorthogonal signals can occur in either one of two cases;
the signals can be chosen to be nonorthogonal at the transmitter
or the orthogonal signals are transmitted, but due to imperfec-
tions in the receiver such as frequency or timing error, the sig-
nals become correlated, and thus, nonorthogonal.

The average BER for equal energy, equiprobable, correlated
binary signals with noncoherent detection is given by [7]

P(E)Zi/ﬂaS (2 ~a?) a9 (6)
b 21 Jo '\ 2(a2 + b2) — 4abcos b

where

_Ja=vEEE 0+ VTP
2 ’ 2

and 0 < |p| < 1 is the magnitude of the crosscorrelation co-
efficient between the two signals. By change of the variable
t = cos? §, after some manipulations, (6) can be expressed in
closed form as

Py (E)
_ ¢'\/ (gNCB)
o 2
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where gneg = (b — a)2/2 and F} (a,b,b'; ¢; z,y) is the Appell
hypergeometric function [10, eq. 5.8.(5)]. The special case p =
0 corresponds to orthogonal BFSK with noncoherent detection,
and using Fi (a,b,b’; ¢;0,0) = 1, we see that (7) reduces in this
particular case to the familiar expression [5, eq. (11)].
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Furthermore, a = 2 — \/5 and b = 2+ \/5 correspond

to 7 /4-DQPSK with Gray coding [7], [8]. In this case, by sub-

stitutinga = /2 — V2andb = /2 + /2 into (7), the average

SER for 7 /4-DQPSK with Gray coding can be obtained as

P, (E) =
27@[
1 1 (2+v2) 2v2
! Fi| 2, m,—m; 1; . 8
2#(9parsi9Fi| 5, m,—m; "4 9DQPSKT " 241/2 ®
m

where gpqpsk = 2 — V2. For Rayleigh fading, we can reduce
(8) to [8, eq. (8.176)] using the identity (19).

C. M-ary Phase-Shift Keying (MPSK)
The average SER for coherent MPSK signals is given by [7]

1 w—(m/M)
P, (E):_/O ¢, <9MPSK>d6
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where gypsk = sin? (m/M). Considering the similarity
of Zympsk to (4) and making the change of variable
t = cos? §/cos? (m/M) in I \psk, after some manipulations,
we obtain

Py (F) = %ﬁbv (9mPsK)
1 1

-2F1 m,—;m—i—l,—_
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Note that using the identity (20) along with
1 1 i 1 z-1
— tan {cot (—)} + - = ,
s T 2 T

we see that (10) reduces to [8, eq. (8.112)] for Rayleigh fading.

r>1

D. M -ary Quadrature Amplitude Modulation (MQAM)
The average SER for coherent square MQAM signals is given
by [7]
4 7\'/2 ) 4 2 71'/4 }
_ _q d’v (gMQAM> do— i qba, <9MQAM> a0
7r
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P (E)

sin? 6 Jo sin? 6

-~ ~~

A A
=71 MQAM =7 MQAM

(11



538

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 4, APRIL 2004

s ™ -
d"‘/ (qMDPSK) Ccos (—) 1 CcOS (—) m -1/2
_ oM —1/2 (g M - -z —tcos? (o=
) == [ -t | (1t () (v ()
m
2. (gvippsic) cos (- 7
v (9MDPSK ) COS (—) 1 13 ¢ (_>
= 2M Fg’) ST, =M, 5 3 7M—7 0s (1) 70052 (L) (14)
T 2 2'2" ) 9vDPSKY M 2M

m

where ¢ = 1 —1/v/M and gyqan = 3/ (2 (M — 1)). Consid-
ering the similarity of Z1 nviqawm to (4) and making the change of
variable t = 1 — tan?#4 in Z> MQaM, after some manipulations,
we obtain

2qI’ (m + %)

Py (E) = m% (9Mqam)
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Using the identity (18) along with

T

2
)

we see that (12) reduces to [8, eq. (8.106)] for Rayleigh fading.

sin~! (z) = tan™* <

E. M-ary Differential Phase-Shift Keying (MDPSK)

The average SER for differentially coherent detection of
MDPSK signals is given by [7]

1 w— (7 /M)
;/0 b, o) as. a3)

By change of the variable t = sin?#/sin? (1/2 — 7/(2M)),
after some manipulations, (13) can be expressed in closed
form as (14), shown at the top of the page, where gnippsk =
sin? (/M) / (1 + cos (/M) = 2sin® (x/(2M)) and F"
is the Lauricella function [11, eq. (2.3.6)]. If the number
of variables n is equal to two, Fgl) reduces to Fj, and

sin? ()

1+ cos (ﬁ cos

if n = 1, Fl(jn) becomes 5 F;. Note that for the special
case M = 2 (binary DPSK) wherein gyppsk = 1, using

Fg’) (a,b1,b2,b3;¢;0,0,2) = oF (a,bs;c;x) along with the
identity sin~ ' (2) = 22 F% (1/2,1/2;3/2;22) [10, eq. 2.8.(13)],
we see that (14) reduces to [8, eq. (8.183)]. Furthermore, for
Rayleigh fading, using (21) together with simple trigonometric
manipulations, we can reduce (14) to [3, eq. (8)].

APPENDIX

In this appendix, we derive the reduction formulas for
Fy(a,1,1;¢2,y) and Fg’) (1/2,1,-1,1/2;3/2; 1, x2, x3).
For |z| < 1 and |y| < 1, we have
I'(c)
I'(c—a)l (a)

1
/ =) (L) (1 —yt) e (1)
0

Fl (a7171;c;:1:7y) =

Using the partial fraction
1 _ T
(I—at)(1—yt) (z—y)(1-at)

(15) can be written as

Yy
TR

T

Fi(a,1,1;¢m,y) = ( )2F1(17a§ )
T—y

i

Using [10, eq. 5.11.(3)] and (16), we can also reduce
Fy (a,1,V;0 4+ 2;2,y) to the Gauss hypergeometric func-

tions, such as
> o Fy <1,a; b+ 2; u)
y—1

Yy
—— ) ;. 17
Y= 1) } 4
A. Special Cases of Interest

1) From (16) with @ = 1 and ¢ = 5/2, we have for |z| < 1
and |y| < 1

5.,
2’ 7y
5

r—=Yy
2) From (17) witha = 1/2 and &/
and |y| < 1

1
Fl (5717

. x) 2F1 (L a5¢;y). (16)
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oo {{
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Y
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T

—1, wehave for |z| < 1
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3) From (17) witha = 1/2 and b’ =
lz] < 1, ]yl < l,andz < y

—1/2, we have for

1 13
F(=1,-2:2
1(27 ’ 2a27$7y)

B |

Using (17) and [10, eq. 5.10.(1)], we have for |z1| < 1, |z2| <
1,and |z3| < 1
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