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On the Error Probability of Binary and M -ary Signals
in Nakagami-m Fading Channels

Hyundong Shin, Student Member, IEEE, and Jae Hong Lee, Senior Member, IEEE

Abstract—In this letter, we present new closed-form formulas
for the exact average symbol-error rate (SER) of binary and

-ary signals over Nakagami- fading channels with arbitrary
fading index . Using the well-known moment generating
function-based analysis approach, we express the average SER in
terms of the higher transcendental functions such as the Gauss
hypergeometric function, Appell hypergeometric function, or Lau-
ricella function. The results are generally applicable to arbitrary
real-valued . Furthermore, with the aid of reduction formulas
of hypergeometric functions, we show previously published results
for Rayleigh fading ( = 1) as special cases of our expressions.

Index Terms—Digital communications, Nakagami fading,
symbol-error rate (SER), wireless communications.

I. INTRODUCTION

I N DIGITAL communication systems, the symbol-error rate
(SER) has been used very extensively as a performance mea-

sure, and accurate methods for evaluating it over fading chan-
nels has been an area of long-time interest (see [2]–[9] and ref-
erences therein). Recently, a unified approach for evaluating the
error performance over fading channels has been developed by
using alternative representations of the Gaussian and Marcum

-functions [7]–[9]. By their alternative representations, the re-
sulting expressions for average error rates are in the form of
single finite-range integrals, whose integrand contains the mo-
ment generating function (MGF) of the instantaneous signal-to-
noise ratio (SNR). In particular, Annamalai and Tellambura [7]
derived closed-form solutions to the average SER for a broad
class of binary and -ary modulation formats in Nakagami-
fading with positive integer , using some trigonometric iden-
tities and the MGF-based analysis method. They also extended
the results to multichannel diversity reception. However, to the
best knowledge of the authors, no closed-form SER expressions
for -ary signals are available for arbitrary , except for non-
coherent detection of orthogonal -ary frequency-shift keying
(MFSK), when the Nakagami fading index is not restricted
to positive integer values.

In this letter, using the MGF method and transforming single
integrals into the hypergeometric functions [10], [11], we de-
rive the exact and closed-form expressions for average SER
of binary and -ary signals in Nakagami- fading channels
with arbitrary real-valued . Our approach leads to expressions
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of average SER involving the Gauss hypergeometric function
, Appell hypergeometric function , or Lauricella function
.1 In addition, we present some reduction formulas for

and . Using these reduction formulas and known identities
and transformations of the hypergeometric functions, we show
the well-known results for Rayleigh fading ( ) are special
cases of our expressions.

II. CHANNEL MODEL

Assume that the transmitted signal is received over slowly
varying flat-fading channels, and let denote the instantaneous
SNR defined by where is the fading ampli-
tude, is the energy per symbol, and is the one-sided noise
spectral density. For Nakagami- fading, the probability den-
sity function (pdf) of is given by [1]

(1)

where is the gamma function, denotes the
mean square value, and is the fading severity parameter that
ranges from 0.5 to . Then, the pdf and MGF of are given
by, respectively [7], [8]

(2)

(3)

where denotes the average SNR per symbol.

III. AVERAGE SERS

In this section, we derive closed-form error rates for several
modulation/detection schemes in Nakagami- fading with ar-
bitrary real-valued , using the MGF-based analysis method
and the transformation of single integrals into the hypergeo-
metric functions.

A. Coherent BPSK and BFSK

The average bit-error rate (BER) for coherent binary signals
is given by [7]

(4)

where for coherent binary phase-shift keying (BPSK),
for coherent orthogonal binary frequency-shift keying

1The hypergeometric functions are provided as the library functions in a
common mathematical software package such as MATHEMATICA.
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(BFSK), and for coherent BFSK with minimum cor-
relation. By change of the variable , after some ma-
nipulations, (4) can be expressed in closed form as

(5)

where is the Gauss hypergeometic function [10,
eq. 2.12.(1)]. Note that we can easily show that (5) is equivalent
to [7, eq. (16)] using the linear transformation

[10, eq. 2.1.(23)]. Making
use of the identity , we
see that (5) reduces to the familiar results [2, eqs. (14-3-7) and
(14-3-8)] for Rayleigh fading.

B. Noncoherent Detection of Equiprobable Correlated Binary
Signals and -Differential Quaternary Phase-Shift Keying
(DQPSK)

Nonorthogonal signals can occur in either one of two cases;
the signals can be chosen to be nonorthogonal at the transmitter
or the orthogonal signals are transmitted, but due to imperfec-
tions in the receiver such as frequency or timing error, the sig-
nals become correlated, and thus, nonorthogonal.

The average BER for equal energy, equiprobable, correlated
binary signals with noncoherent detection is given by [7]

(6)

where

and is the magnitude of the crosscorrelation co-
efficient between the two signals. By change of the variable

, after some manipulations, (6) can be expressed in
closed form as

(7)

where and is the Appell
hypergeometric function [10, eq. 5.8.(5)]. The special case

corresponds to orthogonal BFSK with noncoherent detection,
and using , we see that (7) reduces in this
particular case to the familiar expression [5, eq. (11)].

Furthermore, and correspond
to -DQPSK with Gray coding [7], [8]. In this case, by sub-
stituting and into (7), the average
SER for -DQPSK with Gray coding can be obtained as

(8)

where . For Rayleigh fading, we can reduce
(8) to [8, eq. (8.176)] using the identity (19).

C. -ary Phase-Shift Keying (MPSK)

The average SER for coherent MPSK signals is given by [7]

(9)

where . Considering the similarity
of to (4) and making the change of variable

in , after some manipulations,
we obtain

(10)

Note that using the identity (20) along with

we see that (10) reduces to [8, eq. (8.112)] for Rayleigh fading.

D. -ary Quadrature Amplitude Modulation (MQAM)

The average SER for coherent square MQAM signals is given
by [7]

(11)



538 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 4, APRIL 2004

(14)

where and . Consid-
ering the similarity of to (4) and making the change of
variable in , after some manipulations,
we obtain

(12)

Using the identity (18) along with

we see that (12) reduces to [8, eq. (8.106)] for Rayleigh fading.

E. -ary Differential Phase-Shift Keying (MDPSK)

The average SER for differentially coherent detection of
MDPSK signals is given by [7]

(13)

By change of the variable ,
after some manipulations, (13) can be expressed in closed
form as (14), shown at the top of the page, where

and
is the Lauricella function [11, eq. (2.3.6)]. If the number
of variables is equal to two, reduces to , and
if , becomes . Note that for the special
case (binary DPSK) wherein , using

along with the
identity [10, eq. 2.8.(13)],
we see that (14) reduces to [8, eq. (8.183)]. Furthermore, for
Rayleigh fading, using (21) together with simple trigonometric
manipulations, we can reduce (14) to [3, eq. (8)].

APPENDIX

In this appendix, we derive the reduction formulas for
and .

For and , we have

(15)

Using the partial fraction

(15) can be written as

(16)

Using [10, eq. 5.11.(3)] and (16), we can also reduce
to the Gauss hypergeometric func-

tions, such as

(17)

A. Special Cases of Interest

1) From (16) with and , we have for
and

(18)

2) From (17) with and , we have for
and

(19)
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3) From (17) with and , we have for
, , and

(20)

Using (17) and [10, eq. 5.10.(1)], we have for ,
, and

(21)
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